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Turbulent convective velocities (broadband and 
wavenumber dependent) in a plane jet 
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West Lafagette, Indiana 47907, USA 

[Received 2 3  July 1979 and in revisecl form 9 January 1980) 

An investigation into the magnitude and direction of the convective velocity in a plane 
air jet was performed. Convective velocities were obtained from cross-correlation 
measurements. They are defined as the ratio of the spacing between two hot-wire 
probes and the time delay between their signals to reach maximum correlation. These 
velocities were larger in magnitude than the local mean velocities for lateral distances 
greater than the half-width of the jet. Frequency analysis of the convective velocity 
indicates that the large-scale eddies move slower than the mean flow while the small 
scales move faster. Based on the convective velocity vector, broadband ‘convection 
lines’ were defined and found to point outward with respect to the streamlines for all 
values of y l b  2 0.5. Likewise, frequency investigation indicates that  ‘convection lines’ 
point outward for all y / b  < 1.3 and then inward for larger values of y l b .  

1. Introduction 
Space-time correlations, along with power spectra, are well established classical 

techniques for gaining information into the nature of turbulent flows. Correlations 
permit determination of the velocity by which the eddies are convected within the 
flow. This velocity of convection, or ‘convective velocity’, is often used to relate time 
to space scales of turbulence and to find the existing relationships between velocity and 
pressure fluctuations in the potential core and mixing regions of the jet. 

I n  this work, the measure of space-time correlations, and hence convective velocity, 
has been obtained through normal time averazges. The possibility of measures of condi- 
tional convective velocities, although an attractive alternative which may give further 
insight into the nature of the non-vortical flow ‘driven’ by the moving and engulfing 
interface, is not treated here. It is possible that weighted superposition of the turbulent 
and potential fields could explain some of the trends reported. 

2. Convective velocity 
Taylor’s statistical approach suggests the use of two hot-wire anemometer sensors 

to determine the correlation of velocity fluctuations at different locations in the flow. 
Taylor’s approximation (for a homogeneous flow) formally states that (Taylor 1935) 

alat = - Ul a/ax, (1) 

where Dl is the local mean velocity. 
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FIGURE 1. Space-time correlation curves. (a) The curve shows R(a, 7 )  for z = 2,. 

(6) Three curves show R(z,  7) for .?: = zs,, zs2 and rSs. 

Lin (1953) showed that Taylor’s hypothesis is invalid when large acceleration terms 
(caused by shear) are present. Sternberg (1967) used arguments based on vorticity to 
show that for shear flows in general (and boundary layers in particular) the disturbance 
(or convective) velocity at a point in the flow is usually different from the local mean 
velocity. Fisher & Davies (1964) investigated the frozen turbulence concept in the 
mixing region of an axisymmetric jet and found that the mean shear and high turbulent 
intensities create an uncertainty in the transformations between time and space 
dependence at  a single point in the flow. They found the convective velocity to be 
frequency dependent, and as such not equal to the local mean velocity for all fre- 
quencies. This result casts doubts on the exact validity of Taylor’s hypothesis in shear 
flow. However, numerous experiments have confirmed the applicability of Taylor’s 
simplification for grid flows and in certain regions of wall shear flows. 

There seem to be at  least three different definitions of convective velocity in the 
literature (see appendix). The simplest definition is based on Taylor’s hypothesis. If 
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a space-time correlation similar to that in figure 1 is measured, the convective velocity 
can then be defined as 

where x8 is the separation between the probes and r, the time to  reach maximum 
correlation. According to Taylor’s hypothesis this value of U, should equal the value of 
the local mean velocity U,. Thus, departure of the quantity UJU, from 1 gives an 
indication of the validity of Taylor’s hypothesis. Experimenters using this definition 
for ‘convective velocity’ include Wygnanski & Fiedler (1969), Wilson & Damkevala 
(1970), Rotta (1962), Willmarth (1959), Oswald & Kibens (1971), and Favre, Gaviglio 
& Dumas (1 967). 

I n  the work now reported, the convective velocity U,, as defined by (2), will be used. 
The objective is to determine the variation and direction of U, within the self-similar 
region of a plane jet as well as the applicability of Taylor’s hypothesis. The reported 
work extends the results that are available in the literature and which have been 
summarized in the table in the appendix. 

u, = x*/., 9 (2) 

3. Experimental procedure and results 
3.1. Set-up 

The plane jet issued from a reactangular slit of width D = 0.635 cm, and with an aspect 
ratio of 48. The exit Reynolds number was approximately lo4 based on an exit 
velocity U, of 23.77 m/sec. The usual checks for two-dimensionality (up to X / D  = loo), 
momentum conservation and similarity were performed. The half-width was found to  
satisfy the relationship (for 10 < X / D  < 70) 

- b = 0.0875 (;+ 8*75), 
D 

whereas the axial velocity U, decayed as 

(%)-’ = 0.15 ($+ 1-25) 

(for 10 < X / D  < 70). 

(3) 

(4) 

Two Disa 55F-11 probes were employed as detectors and Security Associates 
Anemometers as signal generators. The analysis of the signals (filtered and non- 
filtered) was made by a Saicor correlator (SAI-42). I n  determining the convective 
velocit,ies the probes were kept a t  a zero angle of incidence (0 = 0) with the mean flow 
and at the same 2 location. Probe separation x,$ was maintained at a constant value 
of 1.27 ern while traversing in the x and y directions. (A separation of 1.27 em was 
chosen so as to minimize possible probe interference. Measurements taken with 
x, 1.27 were found to be equivalent.) 

3.2. Broad-band analysis 
( a )  Magnitude 

The ratio of convective velocities to the local mean velocities were first obtained for 
broadband signal analysis (all frequency components). This is shown in figure 2. The 
ratio of tbe convective to local mean velocity is near unity for y l b  (dimensionless ratio 
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FIGURE 2. Convective velocities - broadband. 0, -, x / D  = 20; 
U,--,x/D = 30; ~ , - - - , x / D  = 4 0 ; o , - - - , x / D  = 60. 
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FIGURE 3. Correlation coefficient as a function of 0. LID = 40, y / b  = 0.25. 

of lateral co-ordinate to half-width) less than 0.8 and increases for larger values of y l b .  
There is a dependence on X/D. For axial distances around 30 diameters the value of 
UJCG in the edges of the jet is larger than for locations around 60 diameters. 

The noted values in the high-intermittency region of the jet are in agreement with 
Wygnanski & Fiedler (1 969), Ott (1 972) and others. The trends in the outer regions, 
for y/b > 0.8, have been commented by Sternberg (1967), Wygnanski & Fiedler (1969), 
Ott (1972) and Favre et al. (1967). 

( b )  Direction 
To determine the direction of the convective velocity, the probe system was rotated 

to  different angles (measured in the x, y plane) and the cross-correlation coefficient 
determined. Plots similar to figure 3 (for example) were generated. From these, the 
angle for maximum correlation and hence that defining the direction of the convective 
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FIGURE 4. Angle of maximum correlation (broadband). -, O V ;  ---, 0,. 
0, z / D  = 20; 0, x / D  = 30; A, z / D  = 40; O , z / D  = 60. 

Y ID 
FIGURE 5 .  Streamlines and convection lines. 0, streamlines; A, convection lines. 

velocity 8, is obtained. Figure 4 shows 6, versus lateral position y/b for all X / D  
stations (20,30,40 and 50) surveyed. Also shown in figure 4 is the direction of the mean 
velocity vector 8, (determined from the classical solutions noted, for instance in 
Schlichting (1955)). For y/b > 0.4 or so, 8, becomes larger and is similar for all X / D  
stations. 

Figure 4, as it stands, does not relay as much information as would be obtained if 
‘convection lines ’ were plotted alongside streamlines. Convection lines may be defined 
as the trajectory of the turbulent structure determined by the corresponding con- 
vective velocity field. Computation of the streamlines was based on the measured U 
and the V obtained from mass conservation. The convection lines were determined 
postulating similarity and using the measured values of u, and 8,. Streamlines and 
convection lines, arbitrarily chosen so that they are coincident a t  X / D  = 20, for 
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FIGURE 6. Convective velocity as a function of centre frequencyf,. z / D  = 20. 

O , y / b  = 0 ;  n , y / b  = 0.5; A , y / b  = 0 . 7 5 ; O , y / b  = 1.0; V, Y / b  = 1.5. 
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FIGURE 7 .  Convective velocities vs. dimensionless wavenumber. 0, y / b  = 0 ;  0, y / b  = 0.50; 
A, y/b = 0.75; 0 ,  y / b  = 1.0. Darkened circles represent data obtained for probe separation 
of 0.635 cm at z / D  = 40 and y / b  = 0. 

example, and with a streamline spacing chosen to correspond to  constant flow lines 
are shown on figure 5. The time interval between consecutive points along either set of 
lines is always of 10D/Uo, as used in the computation scheme. It is interesting to note 
that in all cases the convection lines point further laterally than the streamlines and 
a t  the edges of the flow advance much more rapidly. 

3.3. Frequency -filtered analysis 
( a )  M a g n i ~ ~ d e .  A similar procedure to that employed for broadband investigation was 
used in the analysis of the convective velocity of different frequency components 
(filtered with Krohnite variable bandpass filters (model 310-C). 

Centre frequencies investigated ranged from 25 to 2000 Hz. Measurements were 
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FIGURE 8. Convective velocity vs. dimensionless wavenumber. 0, y / b  = 0 ;  0, y / b  = 0.5; 

A, y / b  = 0.75; 0,  Y / b  = 1.0; 0 ,  y / b  = 1.25; A, Y / b  = 1.5; V, y / b  = 1.75. 
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FIGURE '9. Convective velocity vs. dimensionless wavenumber based on oc. 0, y / b  = 0 ;  0, 
y / b  = 0.5; A, y / b  = 0.75; 0, Y / b  = 1.0; @, Y / b  = 1.25; A, Y / b  = 1.50; v ,  Y / b  = 1.75. 

taken a t  X / D  = 20, 30, 40 and 60. As an example, figure 6 plots U,/U, versus centre 
frequency f, for X I D  = 20 a t  different y / b  locations. It indicates that the low fre- 
quencies (larger structures) move slower than the mean flow while the higher fre- 
quencies (smaller structures) move faster than the mean flow. 

The results are best interpreted in terms of a dimensionless wavenumber (akin to a 

( 5 )  
Strouhal number), k* = 2~~,f,/U,, 

where x8 is the separation between probes, f, is the centre frequency, and U, is the local 
mean velocity. The measure of U, should be independent of the choices ofx,. The scaling 
length in (8) would best be the macroscale or some local length scale. xs is chosen 
strictly for convenience. It must also be noted that k* includes not only waves with 
a wavenumber k aligned normal to U, but it also includes (due to aliasing) higher wave- 
number components with a wave vector a t  an angle with U,. 
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FIGURE 11. Angles for uc as a function of frequency. re/D = 30. 

A plot of UJU, versus k" number is shown in figure 7. All X I D  stations are repre- 
sented, but the dimensionless lateral co-ordinate y l b  is limited to values less than or 
equal to  unity. Similarity is evident and confirms data obtained by Favre (1965), 
Favre et al. (1967), Fisher & Davies (1964) and Wooldridge, Wooten & Amaro (1972) 
that the lower wavenumbers (large-scale disturbances) move slower than the higher 
wavenumber (small-scale) structures. If the data for ylb > 1.0 is included (figure 8), 
a single curve does not result, although the trend is consistent. 

The dimensionless wavenumber of figures 7 and 8 was based on the local mean 
velocity. It could be argued that it should be based on the convective velocity 
instead, or 

k,* = 2rrX,fC/UC. (6) 

The ratio of the velocities Uc/Ul is plotted against k,* in figure 9. The results still show 
considerable differences along different lateral locations in the intermittent region of 
the flow. This may be partly attributed to the varying scales in the lateral direction 
and maybe to  the intermittent nature of the flow as well. 

( b )  Direction. To obtain the angle of maximum correlation Om at  each centre 
frequency, the same procedure was followed as that in determining Om for the broad- 
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band. The dependence of 0, on f, at various X / D ,  y/b stations is shown in figures 10-14. 
(The signal-to-noise ratio for centre frequencies in the order of 800 and larger becomes 
too small primarily in the edges of the jet.) Two observations are in order. First, in 
genera,l for y / b  6 1.3, the angle 8, is positive and increases with frequency. This means 
that, in the usual time-average perspective, the small scales move outwards farther 
as well as faster. On the other hand, for y l b  > 1.3, 8, is negative with slightly larger 
negative values for increasing frequency. This means that the smaller scales appear to 
move inwards faster and farther. Secondly, comparing the broadband angles of 
figure 5 with the values of 6, for the largest eddies (i.e. the intercepts of the ordinate, 
of figures 10-14, see figure 15), it is seen that the larger scales move closer to the mean 
velocity. 
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FIGURE 16. Angle of maximum correlation, both frequency and broadband. --, Or; 
_ _ _  , 0, at, fc = 0. 0, r / D  = 20; a, x / D  = 30; a, .r/D = 40; 0,  .r/D = 6.0 

4. Discussion and conclusions 
The broadband measurements presented indicate that the ratio of the convective 

velocity to the local mean velocity is greater than unity for y/b > 0.8. I n  the ‘self- 
similar ’ region of the jet Taylor’s hypothesis is valid for y / b  < 0-8. This corresponds to 
convective velocities nearly equal to  the local mean velocities. For y/b positions 
greater than 0.8 the convective velocity was noted t o  decrease slower than the local 
mean velocity. 

Frequency analysis indicated that the large-scale motions move slower than the 
local mean flow while the small scales move faster. Broadband ‘convection lines’ lead 
t,he streamlines for y/b 2 0.5. They follow the streamlines for values y/b < 0.5. For 
frequency analysis the ’ convection lines ’ follow the streamlines a t  low frequencies 
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Convective From Robins’s 

0 
0.5 
1.0 
1.5 
2.0 

1.0 
1 .17  
1.56 
2.47 

N 5’4 

1.0 
1.04 
1.20 
1.64 
2-64 

TABLE 1.  Comparison of bulk velocity and convective velocity. 

(large scales). Small scales first point outwards further than the streamlines, where for 
y l b  > 1.3 they reverse in trend, pointing inwards more than the larger scales. 

The trends noted, essentially a convective pattern in which the larger-scale structures 
move slower than the smaller scales, is in agreement with the results of Heidrick, 
Banerjee & Azad (1977) for a pipe flow, Rajagopolan & Antonia (1979) in channel 
flows, Batt (1977) and Jones, Planchon & Hammersley (1973) for mixing layers, and 
Wygnanski & Fiedler (1969) and Wooldridge et al. (1972) in axial jets. They do disagree 
with part of the data in Heidrick, Azad & Banerjee (1971) near the wall of pipe flow 
and Dinkelacker et al. (1977) for pressure patterns beneath a boundary layer. 
McConachie, Bullock & Kronauer (1977) also find a higher convection velocity for the 
smaller wavenumbers (at a given filter centre frequency).? A word of caution is, 
however, in order. McConachie et al. are probably the only ones having a true wave- 
number dependence defined. They obtained this through a transformation from spatial 
co-ordinates to wavenumber space. In  all the other cases reported with a selective 
filtering (this work included), an unavoidable aliasing is taking place. The frequency- 
filtered signals include higher-wavenumber components not aligned along U,. It is 
possible, however, that the presence of the wall and nature of the shear could also be 
having an effect on the preferential motion of the different-sized structures clearly 
underscoring the dangers in the common temptation to generalize from one type of 
flow to another. 

A second common temptation is to  relate the nature of instabilities to  the structure 
of fully developed turbulence. Data on propagation of instabilities, such as that 
attributed to disturbances in the free shear layer, have been noted to exhibit a 
decreasing velocity of propagation with increasing frequency of the disturbance (for 
instance, see Bechert & Pfizenmaier 1975, Miksad 1972 and Hussain & Zaman 1978). 
This is also contrary to  the results now reported supposedly in a fully developed 
turbulent flow. The differing distribution of convective (or phase) velocity with 
frequency (or wavenumber) of the structure of the disturbance under the above 
alternative conditions should be serious enough caution against this comparison. 

A bulk convection velocity is used by Bradshaw, Ferriss & Atwell (1967) for 
boundary-layer calculations and similarly by Robins (1973) in a plane jet. Using 
Robins data such a velocity may be approximated by 

~- u + uuyu:, (7) 
giving the results of table 1 (for sufficiently large X/D stations). 

velocity with wavenumber. 
t On the other hand, in a non-sheared grid flow, Sepri (1976) finds no change of the convection 
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20 

30 

40 

60 

0.086 
0-516 
0.945 
1.375 
1.81 

0.058 
0.647 
0.941 
1.235 
1.53 

0.044 
0.489 
0.934 
1,154 
1.378 

0.10 
0.383 
0.972 
1.59 

1-02 
0.99 
0.85 
0-68 
0.28 

0.99 
1.35 
1.03 
0.86 
0.66 

0.99 
1.27 
0.91 
0.65 
0.52 

1.01 
1.19 
1.09 
0.50 

1.02 
1.50 
1.31 
1.90 
1.41 

0.99 
1.49 
1.38 
1.73 
2.13 

0.99 
1.38 
1.32 
1.23 
1.22 

1.01 
1.24 
1.67 
1.36 

TABLE 2. Distribution of macroscales (determined from energy spectrum). 

The difference between the above values may be in part attributed to the pressure- 
velocity correlation term ignored in the bulk velocity approximation of Robins (1973). 
On the other hand it is quite possible that the different values are attributed to 
different scales or wavenumber distributions governing the correlations and the energy 
transport. 

TheTaylor micro- and macroscales A, A are sometimes used to characterize turbulent 
flows. They are usually determined from the integral and parabolic approximations 
to the spatial correlations. Alternatively, they are sometimes approximated from the 
intercept and the integral of the second moment of the energy spectrum together with 
a descriptive mean velocity. The proper velocity to use is the convective velocity as it 
more closely relates the time and spatial turbulent scales although in its absence the 
local mean velocity is used instead. Accounting for the proper convective velocity the 
longitudinal microscales are seen to increase with lateral distance from the axis (this 
was reported in Goldschmidt & Young (1975)) contrary to the otherwise inferred 
constancy of h along y / b  or decrease along y / b  - as in Gutmark & Wygnanski (1 976). 

The longitudinal macroscales along the axis increase linearly with distance from a 
virtual origin and with a slope comparable to that of the velocity half width, as 
expected based on similarity concepts. The lateral distribution of the macroscales 
determined from the autocorrelation or the energy spectrum will depend on whether 
U, or U, is used in this estimate. Typical values computed are noted in table 2. 

The trend inferred by not accounting for the convective velocity differing from the 
local mean velocity is that of a longitudinal integral scale decreasing in size with 
lateral location. On the other hand, properly considering the convective velocities 
measured shows a much more acceptable description : the sizes of the large structures 
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gradually increase with lateral location, a t  least up to a point near that where the 
interface has the highest probability of occurrence (i.e. y/b = 1.6 as in Jenkins & 
Goldschmidt (1976)). Thereafter a slight tendency for a decrease in scale might be 
present. Although the present data is not sufficient to confirm it, this is in agreement 
with the data of Gutmark & Wygnanski (1976) based on two-point velocity-correlation 
measurements. This further exhibits the need for proper accounting of convective 
velocities when interpreting some of the statistical properties of turbulent flows. (See 
also Antonia, Phan-Thien & Chambers 1979.) 

The work now reported was partially sponsored by the NSF and the ONR. Final 
phases of the work were completed while the first author was hosted (as a Fulbright 
Senior Scholar) by the Department of Mechanical Engineering a t  the University of 
Queensland. Their support, and that of the Australian American Educational Founda- 
tion are gratefully acknowledged. 

Appendix. Alternative definition of convection velocity 
The definition of convection velocity used in this work was given in (2).  
An alternative definition was made by Fisher & Davies (1  964). It is based on a series 

of cross-correlation curves at  different probe separations (measured along the direction 
of the mean flow) as shown in figure 1 b.  An envelope drawn tangent to these curves is 
then an auto-correlation function of the turbulent structure moving with a frame of 
reference in which the change of the turbulent structure is minimized. This suggests the 
definition of a convective velocity as the ratio of the probe separation xs t o  the time 
delay i-,, for which the correlation envelope is tangent to the space-time correlation 
curve for the separation, or 

(A 1 )  U,l= xs/7e* 

This definition has been used by Davies, Fisher & Barratt (1963), Willmarth & 
Wooldridge (1962)) Wooten et al. (1971)) Bradshaw et al. (1964)) Wygnanski & Fiedler 
(1969)) Favre et al. (1967)) Champagne, Harris & Corrsin (1970), Wills (1964), KO & 
Davies (1971)) and Bull (1967) among others. 

The distinction between U, and U,, has been discussed by Wills (1964), Favre et al. 
(1967)) Comte-Bellot & Corrsin (1971), Wygnanski & Fiedler (1969)) and Champagne 
et aZ. (1970). 

Consider a typical plot of constant or iso-correlation curves versus time delay and 
probe separation as in figure 16. According to Fisher & Davis (1964)) U,, is equal to the 
ratio ~ , / 7 ~  for aR(x, .)/ax = 0 as defined by Wills (1964). Fisher & Davis (1964) point 
out that Wills’ definition and their own are equivalent except that theirs is easier to 
determine experimentally. 

Further consideration of figure 16 reveals that a third definition for U, may be 
suggested as the ratio x/7 for which aR(x, 7)/8x = - aR(x, 7) /87.  This better approxi- 
mates Taylor’s hypothesis, in which there is a direct relationship between space and 
time. Such a definition U,, would simply be the tangent of the angle with which the iso- 
correlation curves are skewed with respect to the time axis. Davis et al. (1963) use this 
definition in presenting their data although they make mention of the definition of V,, 
suggested by Fisher & Davies (1964). Interestingly, in a footnote the latter authors 
suggest that  U, is the velocity of the frame of reference where the spatial and temporal 
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Reference 
(first author) 

Bradshaw' 

Bruun (1977) 

Daviesl 
(1963) 

Law (1975) 

Davis2 (1975) 

Wills' ( 1964) 

Wilson2 
(1970) 

Wygnanski3 
(1969) 

Favre' (1967) 

Favres (1967) 

Kovasznays 

Favre' (1965) 

Comte-Bellot' 

Champagne* 

Sepri (1976) 

Frenkiel 
(1966) 

Demetriades 
(1976) 

OswaldD 
(1971) 

Baldwin' 
(1961) 

Heidrick 
(1971) 

Wygnanski 
(1970) 

Batt (1977) 

Wooldridge 
(1972) 

(1971) 

(1970) 

Chanaud' 
(1970) 

KO (1971) 

Flow field and 

Round jet noise 

region Region of test 

X / D  = 2 
production region 0.6 < y /b  < 1.5 

Round jet 

Round jet 
potential core 
mix region 

Round jet 

Round jet 

Round jet 
D = 2 in. 

Round jet 
D = 1 in. 

Round jet 
D = 1.04in. 
Boundary layer 

supersonic 

Boundary layer 

Boundary layer 

Grid 
M = 1 in. 

Grid 
M = 5.08 ern 

Homogeneous 
shear flow 

Heated grid 

Grid 
M = 2.54 cm 

Supersonic wake 

Wake of disk 

flow 

Pipe 
D = 8 i n  

Pipe 
D = 3.1 in. 

Two-dimensional 
mixing region 

Two-dimensional 

X / D  = 2 
-0.1 < y / x  < 0 

X / D  = 1.5, 4.5 
-0.1 < (y -+D) /X  < 0.2 

Within X / D  < 3 

9 < X / D  < 25 
0 < Y / X  < 0-1 

X / D  = 2 
0.3 < y /b  < 0.8 
X / D  = 3 
-0.1 < ( ~ - + D ) / x  < 0.6 

30 < X / D  < 75 
0 < y/.: < 0.15 

y/S  = (0.25) 

y/S = 0.24 

y/S = 0.6 

X / M  = 40 

0.7 

0.03 

Centre-line 

Near wall centre-line 

mixing region 
Round jet core and X / D  = 2 
mixing region y /b  = 0.4 

D = 1.5 in. 

Wall jet - 

Round jet X/D = 1.5 
D = 2.5 cm y /b  = core 

UC/ ull 
0.8-0.1 

0.6-0.68 

0.61-0.2 

0.63-0.69 

0.7-0.4 

0.8-0.1 

0.667 

U,,  1.05-0.4 

0.86 
0.97 
1 40-1.28 

0.8 
0.93 

1.0 

1.0 

Uc,0.9-0*3 

N 1.0 
N 1.0 

3 1.0 

1 .o 

N 1.0 

0.99 

1.16 

> 1  
6 1  
0.85 

< 1  

0.68 

0.5 

0'65-0.75 
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Reference 
(first author) 

Bulllo (1  967) 

Willmarth'O 
(1  962) 

Blackwelder 
(1977) 

Willmarth 
(1959) 

Crocosll 

McConachie12 
(1977) 

Raj agopalan13 
(1980) 

Antonia 
(1979) 

Flow field and 
region 

Boundary layer 

Boundary layer 

Boundary layer 

Pipe 
D = 4in. 

Pipe 

Pipe 

Channel 

Atmospheric 

Region of test 

- 
y / s  = 0 

y+ = 15 

y / s  = 0 

y / s  = 0 
Y+ = 70 

0 < y / D  < 1 

2 = 12 metres 

y / D  = 0 

Plots of U,vs. y/b and U,/U,vs. y/b for Wills, Davies, Bradshaw, and KO are nearly identical 
in the core and mixing region. 

Used cross-schlieren system. Wilson found U, constant across y in the core ana mixing 
regions, Davis went further on X / D  and found 77, always less than U (except for one traverse 
at X/D = 9) .  

Measured U,/U, vs. y/b for varying X I D ,  and found U, varies more slowly than U, across 
the jet. 

Found U, and U,, a function of y/S. 
6 Data is reported by Rotta (1962). 

U, went from 0.92 to  0.97 for y/S increasing from 0.6 to 1.2. 
' The author's calculation. 

U, and U,, differ by 2 %. 
U, is nearly constant across the wake. 

lo U,, increases with probe separation. 
11 Data is reported by Favre (1965). U, decreases with frequency. 
1 2  Measured as correlations in narrow frequency bands. Lower frequencies measured have 

values of U, around 12 o/o higher than local mean velocity whereas for highest frequencies the 
convective velocity is around 75 yo of the local mean. 

13 Away from y / D  = 0 based on velocity correlations; a t  y / D  = 0 based on shear stress 
fluctuations. 

TABLE 3. Convection velocity based on velocity signals. 

rates of change of the pattern are of equal magnitude but opposite in sign; however, 
the plot in figure 16 shows that this is U,2 instead of U,. 

We can now distinguish three convective velocities: U,, which minimizes the change 
of the maximum correlation with respect to time only, ql which minimizes the decay 
of maximum correlation in both time and space; and Uc2 in which the rates of change of 
correlation in space and time are equal. All of these definitions coincide in a truly 
frozen field of turbulence. 

Quantitatively the above are not very different. For nearly homogeneous turbu- 
lence, Champagne et al. (1970) show that U, is about 2 yo greater than U,, as would be 
expected in the nearly frozen field. Wygnanski & Fiedler (1969) found U, to be from 
10 to 20 yo greater than Ucl depending on the location in a round jet. 

Comte-Bellot & Corrsin (197 1) made an interesting analysis of the difference between 
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x 

x ,  = x, 

7, = T m  7 

( b )  
FIGURE 16. Iso-correlation curves, i.e. constant R. 

the time delay r, to  the peak in the space-time correlation curve, and the time delay re 
to  the tangent point on this curve to the moving axis auto-correlation that defines Ucl. 
They suggest for a homogeneous isotropic field that r, will be related to re by the 
expression 

From ( 2 )  and (3), then 
7, = re/(  1 + u’”u;). 

U,/q1 = ( I  + u’”u;), 
comparable to the more general expression in Heskestad (1965). For an example, in 
Champagne et al. (1970) where the turbulent intensity for grid flow is 0.019, Uc/Ucl was 
reported to be 1.02. Wygnanski & Fiedler’s data reveal a turbulent intensity, U f 2 / U : ,  
between 8 and 20 %. If Comte-Bellot & Corrsin’s analysis for isotropic turbulence is 
extended to the jet shear flow, a value slightly larger than 1.08-1.20 would be expected 
for UJU,.. Wygnanski & Fiedler report values between 1.10 and 1.20. Thus, a t  least 
for turbulent intensity less than or equal to 20 yo this analysis can be used to give a 
good estimate of Uc, from U,, which is by far the easier to  determine experimentally. 
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Experimental work in shear flows has demonstrated that different frequency 
components of the turbulent flow are convected with different velocities (and not 
necessarily equal to the mean velocity). Wills (1964) notes that in such flows the usual 
definitions of U, (U, and U,,) may lead to ambiguous results. Wills (1964), Lumley 
(1965), andHeidrick et al. (1971), amongothers, have suggested more refined definitions 
for r/, to take its likely frequency dependence into account. 

A fourth definition for U, was put forth by Favre et al. (1967). They define a 
convective velocity (noting symmetry with respect to space and time of the iso- 
correlation plots) 

uc, = (ucU,,).f. (A 4) 

For all practical purposes, U,, is closer to U,, than U, or U,,. Results available in the 
literature, indicating the definitions employed, are noted on table 3. 
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